

NVENC_VideoEncoder_API_PG-06155-001_v07 | Nov 2016

Programming Guide

NVIDIA VIDEO ENCODER
(NVENC) INTERFACE

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | ii

DOCUMENT CHANGE HISTORY

NVENC_VideoEncoder_API_PG-06155-001_v07

Version Date Authors Description of Change

1.0 2011/12/29 SD/CC Initial release.

1.1 2012/05/04 SD Update for Version 1.1

2.0 2012/10/12 SD Update for Version 2.0

3.0 2013/07/25 AG Update for Version 3.0

4.0 2014/07/01 SM Update for Version 4.0

5.0 2014/11/30 MV Update for Version 5.0

6.0 2015/10/15 VP Update for Version 6.0

7.0 2016/6/10 SM Update for Version 7.0

7.1 2016/11/15 SM Update for Version 7.1

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | iii

TABLE OF CONTENTS

Chapter 1. Introduction.. 1

Chapter 2. Basic Encoding Flow ... 2

Chapter 3. Setting Up Hardware for Encoding .. 3

3.1 Opening an Encode Session .. 3

3.1.1 Initializing encode device .. 3

3.2 Selecting Encoder Codec GUID .. 4

3.3 Encoder Preset Configurations ... 4

3.3.1 Enumerating preset GUIDs .. 5

3.3.2 Selecting encoder preset configuration .. 5

3.4 Selecting an Encoder Profile ... 6

3.5 Getting Supported List of Input Formats ... 6

3.6 Querying encoder Capabilities ... 6

3.7 Initializing the Hardware Encoder Session ... 7

3.8 Encode Session Attributes .. 7

3.8.1 Configuring encode session attributes ... 7

3.8.2 Finalizing codec configuration for encoding ... 8

3.8.3 Rate control .. 9

3.8.4 Setting encode session attributes .. 10

3.9 Creating Resources Required to Hold Input/output Data 11

3.10 Retrieving Sequence Parameters .. 12

Chapter 4. Encoding the Video Stream ... 13

4.1 Preparing Input Buffers for Encoding.. 13

4.1.1 Input buffers allocated through NVIDIA Video Encoder Interface.................... 13

4.1.2 Input buffers allocated externally .. 14

4.2 Configuring Per-Frame Encode Parameters .. 15

4.2.1 Forcing current frame to be encoded as intra frame 15

4.2.2 Forcing current frame to be used as a reference frame 15

4.2.3 Forcing current frame to be used as an IDR frame 15

4.2.4 Requesting generation of sequence parameters .. 15

4.3 Submitting Input Frame for Encoding ... 16

4.4 Retrieving Encoded Output .. 16

Chapter 5. End of Encoding ... 17

5.1 Notifying the End of Input Stream ... 17

5.2 Releasing Resources ... 17

5.3 Closing Encode Session .. 18

Chapter 6. Modes of Operation .. 19

6.1 Asynchronous Mode (Windows 7 and above) .. 19

6.2 Synchronous Mode ... 21

6.3 Threading Model .. 21

Chapter 7. Motion-Estimation-Only Mode ... 23

7.1 Query Motion-Estimation Only Mode Capability .. 23

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | iv

7.2 Create Resources for Input/Output Data ... 24

7.3 Populate ME only mode settings ... 24

7.4 Run Motion Estimation ... 24

7.5 Enabling Motion estimation for stereo usecases ... 25

7.6 Release the Created Resources... 26

Chapter 8. Advanced Features and Settings .. 27

8.1 Look-ahead .. 27

8.2 Adaptive Quantization (AQ) ... 28

8.2.1 Spatial AQ ... 28

8.2.2 Temporal AQ .. 28

8.3 High bit depth encoding ... 29

8.4 Encoder Features using CUDA .. 29

Chapter 9. Recommended NVENC Settings .. 31

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 1

Chapter 1. INTRODUCTION

NVIDIA GPUs based on Kepler, Maxwell and the latest Pascal architectures contain a

hardware-based H.264/HEVC video encoder (hereafter referred to as NVENC). The

NVENC hardware takes YUV/RGB as input, and generates an H.264/HEVC compliant

video bit stream. NVENC hardware’s encoding capabilities can be accessed using the

NVENCODE APIs, available in the NVIDIA Video Codec SDK.

This document provides information on how to program the NVENC using the

NVENCODE APIs exposed in the SDK. The NVENCODE APIs expose encoding

capabilities on Windows (Windows 7 and above) and Linux.

It is expected that the developers should have understanding of H.264/HEVC video

codecs and familiarity with Windows and/or Linux development environment.

NVENCODE API guarantees backward compatibility. This means that applications

compiled with older versions of released API will continue to work on future driver

versions released by NVIDIA.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 2

Chapter 2. BASIC ENCODING FLOW

Developers can create a client application that calls NVENCODE API functions exposed

by nvEncodeAPI.dll for Windows or libnvidia-encode.so for Linux. These

libraries are installed as part of the NVIDIA display driver. The client application can

either link to these libraries at run-time using LoadLibrary() on Windows or

dlopen() on Linux.

The NVIDIA video encoder API is designed to accept raw video frames (in YUV or RGB

format) and output the H.264 or HEVC bitstream. Broadly, the encoding flow consists of

the following steps:

1. Initialize the encoder

2. Set up the desired encoding parameters

3. Allocate input/output buffers

4. Copy frames to input buffers and read bitstream from the output buffers. This can be

done synchronously (Windows & Linux) or asynchronously (Windows 7 and above

only).

5. Close the encoding session

6. Clean-up; release all allocated input/output buffers

These steps are explained in the rest of the document and demonstrated in the sample

application included in the Video Codec SDK package.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 3

Chapter 3. SETTING UP HARDWARE
FOR ENCODING

3.1 OPENING AN ENCODE SESSION

After loading the DLL or shared object library, the client's first interaction with the API

is to call NvEncodeAPICreateInstance. This populates the input/output buffer

passed to NvEncodeAPICreateInstance with pointers to functions which implement

the functionality provided in the interface.

After loading the NVENC Interface, the client should first call

NvEncOpenEncodeSessionEx API to open an encoding session. This function

returns an encode session handle which must be used for all subsequent calls to the API

functions in the current session.

3.1.1 Initializing encode device

The NVIDIA Encoder supports use of the following types of devices:

3.1.1.1 DirectX 9
The client should create a DirectX 9 device with behavior flags including:

D3DCREATE_FPU_PRESERVE

D3DCREATE_MULTITHREADED

D3DCREATE_HARDWARE_VERTEXPROCESSING

The client should pass a pointer to IUnknown interface of the created device (typecast to

void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set

NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to

NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows

7 and later versions of the Windows OS.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 4

3.1.1.2 DirectX 10
The client should pass a pointer to IUnknown interface of the created device typecast to

void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set

NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to

NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows

7 and later versions of Windows OS.

3.1.1.3 DirectX 11
The client should pass a pointer to IUnknown interface of the created device (typecast to

void *) as NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set

NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to

NV_ENC_DEVICE_TYPE_DIRECTX. Use of DirectX devices is supported only on Windows

7 and later versions of Windows OS.

3.1.1.4 CUDA
The client should create a floating CUDA context, and pass the CUDA context handle as

NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::device, and set

NV_ENC_OPEN_ENCODE_SESSION_EX_PARAMS::deviceType to

NV_ENC_DEVICE_TYPE_CUDA. Use of CUDA device for Encoding is supported on Linux

and Windows 7 and later OS’s.

3.2 SELECTING ENCODER CODEC GUID

The client should select an Encoding GUID that represents the desired codec for

encoding the video sequence in the following manner:

1. The client should call NvEncGetEncodeGUIDCount to get the number of supported

Encoder GUIDs from the NVIDIA Video Encoder Interface.

2. The client should use this count to allocate a buffer of sufficient size to hold the

supported Encoder GUIDS.

3. The client should then call NvEncGetEncodeGUIDs to populate this list.

The client should select a GUID that matches its requirement from this list and use that

as the encodeGUID for the remainder of the encoding session.

3.3 ENCODER PRESET CONFIGURATIONS

The NVIDIA Encoder Interface exposes various presets to cater to different video

encoding use cases. Using these presets will automatically set all relevant encoding

parameters. This is a coarse level of control exposed by the API. Specific

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 5

attributes/parameters within the preset can be tuned, if required. This is explained in

next two subsections.

3.3.1 Enumerating preset GUIDs

The client can enumerate supported Preset GUIDs for the selected encodeGUID as

follows:

1. The client should call NvEncGetEncodePresetCount to get the number of supported

Encoder GUIDs.

2. The client should use this count to allocate a buffer of sufficient size to hold the

supported Preset GUIDs.

3. The client should then call NvEncGetEncodePresetGUIDs to populate this list.

3.3.2 Selecting encoder preset configuration

As mentioned above, the client can use the presetGUID for configuring the encode

session directly. This will automatically set the hardware encoder with appropriate

parameters for particular use-case implied by the preset. If required, the client has the

option to fine-tune the encoder configuration parameters in the preset, and override the

preset defaults. This approach is often-times more convenient from programming point

of view as the programmer only needs to change the configuration parameters which

he/she is interested in, leaving everything else pre-configured as per the preset

definition.

Here are the steps to fetch a preset encode configuration and optionally change select

configuration parameters:

1. Enumerate the supported presets as described above, in Section 3.3.1.

2. Select the preset GUID for which the encode configuration is to be fetched.

3. The client should call NvEncGetEncodePresetConfig with the selected encodeGUID

and presetGUID as inputs

4. The required preset encoder configuration can be retrieved through

NV_ENC_PRESET_CONFIG::presetCfg.

5. Over-ride the default encoder parameters, if required, using the corresponding

configuration APIs.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 6

3.4 SELECTING AN ENCODER PROFILE

The client may specify a profile to encode for specific encoding scenario. For example,

certain profiles are required for encoding video for playback on iPhone/iPod, encoding

video for blue-ray disc authoring, etc.

The client should do the following to retrieve a list of supported encoder profiles:

1. The client should call NvEncGetEncodeProfileGUIDCount to get the number of

supported Encoder GUIDs from the NVIDIA Video Encoder Interface.

2. The client should use this count to allocate a buffer of sufficient size to hold the

supported Encode Profile GUIDS.

3. The client should then call NvEncGetEncodeProfileGUIDs to populate this list.

The client should select the profile GUID that best matches the requirement.

3.5 GETTING SUPPORTED LIST OF INPUT
FORMATS

NVENCODE API accepts input frames in several different formats, such as YUV and

RGB in specific formats, as enumerated in NV_ENC_BUFFER_FORMAT.

List of supported input formats can be retrieved as follows:

1. The client should call NvEncGetInputFormatCount to get the number of supported

input formats.

2. The client should use this count to allocate a buffer to hold the list of supported

input buffer formats (which are list elements of type NV_ENC_BUFFER_FORMAT).

3. Retrieve the supported input buffer formats by calling NvEncGetInputFormats.

The client should select a format enumerated in this list for creating input buffers.

3.6 QUERYING ENCODER CAPABILITIES

NVIDIA video encoder hardware has evolved over multiple generations, with many

features being added in each new generation of the GPU. To facilitate application to

dynamically figure out the capabilities of the underlying hardware encoder on the

system, NVENCODE API provides a dedicated API to query these capabilities. It is a

good programming practice to query for support of the desired encoder feature before

making use of the feature.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 7

Querying the encoder capabilities can be accomplished as follows:

1. Specify the capability attribute to be queried in NV_ENC_CAPS_PARAM::capsToQuery

parameter. This should be a member of the NV_ENC_CAPS enum.

2. Call NvEncGetEncodeCaps to determine support for the required attribute.

Refer to the API reference NV_ENC_CAPS enum definition for interpretation of individual

capability attributes.

3.7 INITIALIZING THE HARDWARE ENCODER
SESSION

The client needs to call NvEncInitializeEncoder with a valid encoder configuration

specified through NV_ENC_INITIALIZE_PARAMS and encoder handle (returned upon

successful opening of encode session)

3.8 ENCODE SESSION ATTRIBUTES

3.8.1 Configuring encode session attributes

Encode session configuration is divided into three parts:

3.8.1.1 Session parameters

Common parameters such as input format, output dimensions, display aspect ratio,

frame rate, average bitrate, etc. are available in NV_ENC_INITIALIZE_PARAMS structure.

The client should use an instance of this structure as input to NvEncInitalizeEncoder.

The Client must populate the following members of the NV_ENC_INITIALIZE_PARAMS

structure for the encode session to be successfully initialized:

 NV_ENC_INITALIZE_PARAMS::encodeGUID: The client must select a suitable codec

GUID as described in Section 3.2.

 NV_ENC_INITIALIZE_PARAMS::encodeWidth: The client must specify the desired

width of the encoded video.

 NV_ENC_INITIALIZE_PARAMS::encodeHeight: The client must specify the desired

height of the encoded video.

NV_ENC_INITALIZE_PARAMS::reportSliceOffsets can be used to enable reporting of

slice offsets. This feature requires NV_ENC_INITALIZE_PARAMS::enableEncodeAsync

to be set to 0, and does not work with MB-based and byte-based slicing on Kepler GPUs.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 8

3.8.1.2 Advanced codec-level parameters

Parameters dealing with the encoded bit stream such as GOP length, encoder profile,

rate control mode, etc. are exposed through the structure NV_ENC_CONFIG. The client can

pass codec level parameters through NV_ENC_INITIALIZE_PARAMS:: encodeConfig

as explained below.

3.8.1.3 Advanced codec-specific parameters

Advanced H.264 and HEVC specific parameters are available in structures

NV_ENC_CONFIG_H264 and NV_ENC_CONFIG_HEVC respectively.

The client can pass codec-specific parameters through the structure

NV_ENC_CONFIG::encodeCodecConfig.

3.8.2 Finalizing codec configuration for encoding

3.8.2.1 High-level control using presets

This is the simplest method of configuring the NVIDIA Video Encoder Interface, and

involves minimal setup steps to be performed by the client. This is intended for use

cases where the client does not need to fine-tune any codec level parameters.

In this case, the client should follow these steps:

1. The client should specify the session parameters as described in Section 3.8.1.1.

2. Optionally, the client can enumerate and select preset GUID that best suits the

current use case, as described in Section 3.3.1. The client should then pass the

selected preset GUID using NV_ENC_INITIALIZE_PARAMS::presetGUID. This helps

the NVIDIA Video Encoder interface to correctly configure the encoder session

based on the encodeGUID and presetGUID provided.

3. The client should set the advanced codec-level parameter pointer

NV_ENC_INITIALIZE_PARAMS::encodeConfig::encodeCodecConfig to NULL.

3.8.2.2 Finer control by overriding preset parameters

The client can choose to edit some encoding parameters on top of the parameters set by

the individual preset, as follows:

1. The client should specify the session parameters as described in Section 3.8.1.1.

2. The client should enumerate and select a preset GUID that best suites the current use

case, as described in Section 3.3.1. The client should retrieve a preset encode

configuration as described in Section 3.3.2.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 9

3. The client may need to explicitly query the capability of the encoder to support

certain features or certain encoding configuration parameters. For this, the client

should do the following:

4. Specify the capability desired attribute through

NV_ENC_CAPS_PARAM::capsToQuery parameter. This should be a member of the

NV_ENC_CAPS enum.

5. Call NvEncGetEncodeCaps to determine support for the required attribute. Refer

to NV_ENC_CAPS enum definition in the API reference for interpretation of

individual capability attributes.

6. Select a desired preset GUID and fetch the corresponding Preset Encode

Configuration as described in Section 3.3.

7. The client can then override any parameters from the preset NV_ENC_CONFIG

according to its requirements. The client should pass the fine-tuned NV_ENC_CONFIG

structure using

NV_ENC_INITIALIZE_PARAMS::encodeConfig::encodeCodecConfig pointer.

8. Additionally, the client should also pass the selected preset GUID through

NV_ENC_INITIALIZE_PARAMS::presetGUID. This is to allow the NVIDIA Video

Encoder interface to program internal parameters associated with the encoding

session to ensure that the encoded output conforms to the client’s request. Note that

passing the preset GUID here will not override the fine-tuned parameters.

3.8.3 Rate control

NVENC supports several rate control modes and provides control over various

parameters related to the rate control algorithm via structure

NV_ENC_INITIALIZE_PARAMS::encodeConfig::rcParams. The rate control algorithm

is implemented in NVENC firmware.

NVENC supports 1-pass (NV_ENC_PARAMS_RC_VBR and NV_ENC_PARAMS_RC_CBR) and

2-pass (NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ, NV_ENC_PARAMS_RC_CBR_HQ and

NV_ENC_PARAMS_RC_VBR_HQ) rate control modes. In 1-pass rate control mode, NVENC

estimates the required QP for the macroblock and immediately encodes the macroblock.

In 2-pass rate control modes, NVENC estimates the complexity of the frame to be

encoded and determines bit distribution across the frame in the first pass. In the second

pass, NVENC actually encodes macroblocks in the frame using the distribution

determined in the first pass. As a result, quality of the encoded bitstream is generally

better with 2-pass encoding, at the cost of some performance.

At a high level, NVENC supports following rate control modes:

 Constant bitrate (CBR): Constant bitrate is specified by setting rateControlMode to

NV_ENC_PARAMS_RC_CBR, NV_ENC_PARAMS_RC_CBR_LOWDELAY_HQ or

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 10

NV_ENC_PARAMS_RC_CBR_HQ. In this mode, only averageBitRate is required and

used as the target output bitrate by the rate control algorithm.

 Variable bitrate (VBR): Variable bitrate is specified by setting rateControlMode to

NV_ENC_PARAMS_RC_VBR or NV_ENC_PARAMS_RC_VBR_HQ. The encoder tries to

conform to average bitrate of averageBitRate over the long term while not

exceeding maxBitRate any time during the encoding.

In this mode, averageBitRate must be specified. If maxBitRate isn’t specified,

NVENC will set it to an internally determined default value. It is recommended that

the client specify both parameters maxBitRate and averageBitRate for better

control.

 Constant QP: This mode is specified by setting rateControlMode to

NV_ENC_PARAMS_RC_CONSTQP. In this mode, the entire frame is encoded using QP

specified in NV_ENC_RC_PARAMS::constQP.

 Target quality: This mode is specified by setting rateControlMode to one of the

VBR modes and desired target quality in targetQuality. The range of this target

quality is 1 to 51, roughly corresponding to the range of possible QP values. In this

mode, the encoder tries to maintain constant quality for each frame, by allowing the

bitrate to vary subject to the bitrate parameters specified in maxBitRate and

averageBitRate. If maxBitRate and averageBitRate are not specified, the

encoder will use as many bits as needed to achieve the target quality. However, if

both parameters are set, they will form the upper bound on the actual bitrate. The

bitrate will become constrained, resulting in the desired target quality possibly not

being achieved.

3.8.4 Setting encode session attributes

Once all Encoder settings have been finalized, the client should populate a

NV_ENC_CONFIG structure, and use it as an input to NvEncInitializeEncoder in order

to freeze the Encode settings for the current encodes session. Some settings such as rate

control mode, average bitrate, resolution etc. can be changed on-the-fly.

The client is required to explicitly specify the following while initializing the Encode

Session:

3.8.4.1 Mode of operation

The client should set NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1 if it

wants to operate in asynchronous mode and 0 for operating in synchronous mode.

Asynchronous mode encoding is only supported on Windows 7 and later. Refer to Chapter 6

for more detailed explanation.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 11

3.8.4.2 Picture-type decision

If the client wants to send the input buffers in display order, it must set enablePTD =
1.

If the client wants to send the input buffers in encode order, it must set enablePTD = 0,

and must specify

 NV_ENC_PIC_PARAMS::pictureType

 NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC::displayPOCSyntax

 NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC::refPicFlag

3.9 CREATING RESOURCES REQUIRED TO HOLD
INPUT/OUTPUT DATA

Once the encode session is initialized, the client should allocate buffers to hold the

input/output data.

The client may choose to allocate input buffers through NVIDIA Video Encoder

Interface by calling NvEncCreateInputBuffer API. In this case, the client is responsible

to destroy the allocated input buffers before closing the encode session. It is also the

client’s responsibility to fill the input buffer with valid input data according to the

chosen input buffer format.

The client should allocate buffers to hold the output encoded bit stream using the

NvEncCreateBitstreamBuffer API. It is the client’s responsibility to destroy these

buffers before closing the encode session.

Alternatively, in scenarios where the client cannot or does not want to allocate input

buffers through the NVIDIA Video Encoder Interface, it can use any externally allocated

DirectX resource as an input buffer. However, the client has to perform some simple

processing to map these resources to resource handles that are recognized by the

NVIDIA Video Encoder Interface before use. The translation procedure is explained in

Section 4.1.2.

If the client has used a CUDA device to initialize the encoder session, and wishes to use

input buffers NOT allocated through the NVIDIA Video Encoder Interface, the client is

required to use buffers allocated using the cuMemAlloc family of APIs. The NVIDIA

Video Encoder Interface version 7.0 only supports CUdevicePtr as a supported input

format. Support for CUarray inputs will be added in future versions.

Note: The client should allocate at least (1 + NB) input and output buffers, where NB is

the number of B frames between successive P frames.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 12

3.10 RETRIEVING SEQUENCE PARAMETERS

After configuring the encode session, the client can retrieve the sequence parameter

information (SPS) at any time by calling NvEncGetSequenceParams. It is the client’s

responsibility to allocate and eventually de-allocate a buffer of size MAX_SEQ_HDR_LEN

to hold the sequence parameter information.

By default, SPS/PPS data will be attached to every IDR frame. However, the client can

request the encoder to generate SPS/PPS data on demand as well. To accomplish this, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_OUTPUT_SPSPPS. The

output frame generated for the current input will then include SPS/PPS.

The client can call NvEncGetSequenceParams at any time, after the encoder has been

initialized (NvEncInitializeEncoder) and the session is active.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 13

Chapter 4. ENCODING THE VIDEO
STREAM

Once the encode session is configured and input/output buffers are allocated, the client

can start streaming the input data for encoding. The client is required to pass a handle to

a valid input buffer and a valid bit stream (output) buffer to the NVIDIA Video Encoder

Interface for encoding an input picture.

4.1 PREPARING INPUT BUFFERS FOR ENCODING

There are two methods to allocate and pass input buffers to the video encoder.

4.1.1 Input buffers allocated through NVIDIA Video
Encoder Interface

If the client has allocated input buffers through NvEncCreateInputBuffer, the client

needs to fill valid input data before using the buffer as input for encoding. For this, the

client should call NvEncLockInputBuffer to get a CPU pointer to the input buffer. Once

the client has filled input data, it should call NvEncUnlockInputBuffer. The input

buffer should be passed to the encoder only after unlocking it. Any input buffers should

be unlocked by calling NvEncUnlockInputBuffer before destroying/reallocating them.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 14

4.1.2 Input buffers allocated externally

In order to pass externally allocated buffers to the encoder, follow these steps:

1. Populate NV_ENC_REGISTER_RESOURCE with attributes of the externally allocated

buffer.

2. Call NvEncRegisterResource with the NV_ENC_REGISTER_RESOURCE populated in

the above step.

3. NvEncRegisterResource returns an opaque handle in

NV_ENC_REGISTER_RESOURCE::registeredResource which should be saved.

4. Call NvEncMapInputResource with the handle returned above.

5. The mapped handle will then be available in
NV_ENC_MAP_INPUT_RESOURCE::mappedResource.

6. The client should use this mapped handle

(NV_ENC_MAP_INPUT_RESOURCE::mappedResource) as the input buffer handle

in NV_ENC_PIC_PARAMS.

7. After the client has finished using the resource NvEncUnmapInputResource must be

called.

8. The client must also call NvEncUnregisterResource with the handle returned by

NvEncRegisterResource before destroying the registered resource.

The mapped resource handle

(NV_ENC_MAP_INPUT_RESOURCE::mappedResource) should not be used for any

other purpose outside the NVIDIA Video Encoder Interface while it is in mapped

state. Such usage is not supported and may lead to undefined behavior.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 15

4.2 CONFIGURING PER-FRAME ENCODE
PARAMETERS

The client should populate NV_ENC_PIC_PARAMS with the parameters to be applied to

the current input picture. The client can do the following on a per-frame basis.

4.2.1 Forcing current frame to be encoded as intra
frame

To force the current frame as intra (I) frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_FORCEINTRA

4.2.2 Forcing current frame to be used as a reference
frame

To force the current frame to be used as a reference frame, set

NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC::refPicFlag = 1

4.2.3 Forcing current frame to be used as an IDR frame

To force the current frame to be encoded as IDR frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_FORCEIDR

4.2.4 Requesting generation of sequence parameters

To include SPS/PPS along with the currently encoded frame, set

NV_ENC_PIC_PARAMS::encodePicFlags = NV_ENC_PIC_FLAG_OUTPUT_SPSPPS

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 16

4.3 SUBMITTING INPUT FRAME FOR ENCODING

The client should call NvEncEncodePicture to perform encoding.

The input picture data will be taken from the specified input buffer, and the encoded bit

stream will be available in the specified bit stream (output) buffer once the encoding

process completes.

Codec-agnostic parameters such as timestamp, duration, input buffer pointer, etc. are

passed via the structure NV_ENC_PIC_PARAMS while codec-specific parameters are

passed via the structure NV_ENC_PIC_PARAMS_H264/NV_ENC_PIC_PARAMS_HEVC

depending upon the codec in use.

The client should specify the codec-specific structure in NV_ENC_PIC_PARAMS using the

NV_ENC_PIC_PARAMS::codecPicParams member.

4.4 RETRIEVING ENCODED OUTPUT

Upon completion of the encoding process for an input picture, the client is required to

call NvEncLockBitstream to get a CPU pointer to the encoded bit stream. The client can

make a local copy of the encoded data or pass the CPU pointer for further processing

(e.g. to a media file writer).

The CPU pointer will remain valid until the client calls NvUnlockBitstreamBuffer. The

client should call NvUnlockBitstreamBuffer after it completes processing the output

data.

The client must ensure that all bit stream buffers are unlocked before destroying/de-

allocating them (e.g. while closing an encode session) or even before reusing them again

as output buffers for subsequent frames.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 17

Chapter 5. END OF ENCODING

5.1 NOTIFYING THE END OF INPUT STREAM

To notify the end of input stream, the client must call NvEncEncodePicture with the

flag NV_ENC_PIC_PARAMS:: encodePicFlags set to NV_ENC_FLAGS_EOS and all other

members of NV_ENC_PIC_PARAMS set to 0. No input buffer is required while calling

NvEncEncodePicture for EOS notification.

EOS notification effectively flushes the encoder. This can be called multiple times in a

single encode session. This operation however must be done before closing the encode

session.

5.2 RELEASING RESOURCES

Once encoding completes, the client should destroy all allocated resources.

The client should call NvEncDestroyInputBuffer if it had allocated input buffers

through the NVIDIA Video Encoder Interface. The client must ensure that input buffer

is first unlocked by calling NvUnlockInputBuffer before destroying it.

The client should call NvEncDestroyBitStreamBuffer to destroy each bitstream buffer

it had allocated. The client must ensure that the bitstream buffer is first unlocked by

calling NvEncUnlockBitstream before destroying it.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 18

5.3 CLOSING ENCODE SESSION

The client should call NvEncDestroyEncoder to close the encoding session. The client

should ensure that all resources tied to the encode session being closed have been

destroyed before calling NvEncDestroyEncoder. These include input buffers, bit stream

buffers, SPS/PPS buffer, etc.

It must also ensure that all registered events are unregistered, and all mapped input

buffer handles are unmapped.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 19

Chapter 6. MODES OF OPERATION

The NVIDIA Video Encoder Interface supports the following two modes of operation.

6.1 ASYNCHRONOUS MODE (WINDOWS 7 AND
ABOVE)

This mode of operation is used for asynchronous output buffer processing. For this

mode, the client allocates an event object and associates the event with an allocated

output buffer. This event object is passed to the NVIDIA Encoder Interface as part of the

NvEncEncodePicture API. The client can wait on the event in a separate thread. When

the event is signaled, the client calls the NVIDIA Video Encoder Interface to copy output

bitstream produced by the encoder. Note that the encoder support asynchronous mode

of operation only for Windows 7 and above. In Linux, ONLY synchronous mode is

supported (refer to Section 6.2.)

The client should set the flag NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 1

to indicate that it wants to operate in asynchronous mode. After creating the event

objects (one object for each output bitstream buffer allocated), the client needs to register

them with the NVIDIA Video Encoder Interface using the NvEncRegisterAsyncEvent.

The client is required to pass a bitstream buffer handle and the corresponding event

handle as input to NvEncEncodePicture. The NVIDIA Video Encoder Interface will

signal this event when the hardware encoder finishes encoding the current input data.

The client can then call NvEncLockBitstream in non-blocking mode

NV_ENC_LOCK_BITSTREAM::doNotWait flag set to 1 to fetch the output data.

The client should call NvEncUnregisterAsyncEvent to unregister the Event handles

before destroying the event objects. Whenever possible, NVIDIA recommends using the

asynchronous mode of operation instead of synchronous mode.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 20

A step-by-step control flow for asynchronous mode is as follows:

1. When working in asynchronous mode, the output sample must consist of an event +

output buffer and clients must work in multi-threaded manner (D3D9 device should

be created with MULTITHREADED flag).

2. The output buffers are allocated using NvEncCreateBitstreamBuffer API. The

NVIDIA Video Encoder Interface will return an opaque pointer to the output

memory in NV_ENC_CREATE_BITSTREAM_BUFFER::bitstreambuffer. This opaque

output pointer should be used in NvEncEncodePicture and NvEncLockBitsteam/

NvEncUnlockBitsteam calls. For accessing the output memory using CPU, client

must call NvEncLockBitsteam API. The number of IO buffers should be at least 4 +

number of B frames.

3. The events are windows event handles allocated using Windows’ CreateEvent API

and registered using the function NvEncRegisterAsyncEvent before encoding. The

registering of events is required only once per encoding session. Clients must

unregister the events using NvEncUnregisterAsyncEvent before destroying the

event handles. The number of event handles must be same as number of output

buffers as each output buffer is associated with an event.

4. Client must create a secondary thread in which it can wait on the completion event

and copy the bitstream data from the output sample. Client will have two threads:

one is the main application thread which submits encoding work to NVIDIA

Encoder while secondary thread waits on the completion events and copies the

compressed bitstream data from the output buffer.

5. Client must send the output buffer and event in

NV_ENC_PIC_PARAMS::outputBitstream and NV_ENC_PIC_PARAMS::

completionEvent fields respectively as part of NvEncEncodePicture API call.

6. Client should then wait on the event on the secondary thread in the same order in

which it has called NvEncEncodePicture calls irrespective of input buffer re-

ordering (encode order != display order). NVIDIA Encoder takes care of the

reordering in case of B frames and should be transparent to the encoder clients.

7. When the event gets signalled client must send down the output buffer of sample

event it was waiting on in NV_ENC_LOCK_BITSTREAM::outputBitstream field as

part of NvEncLockBitstream call.

8. The NVIDIA Encoder Interface returns a CPU pointer and bitstream size in bytes as

part of the NV_ENC_LOCK_BITSTREAM.

9. After copying the bitstream data, client must call NvEncUnlockBitstream for the

locked output bitstream buffer.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 21

Note:

1. The client will receive the event's signal and output buffer in the same order in

which they were queued.

2. The NV_ENC_LOCK_BITSTREAM::pictureType notifies the output picture type to the

clients.

3. Both, the input and output sample (output buffer and the output completion event)

are free to be reused once the NVIDIA Video Encoder Interface has signalled the

event and the client has copied the data from the output buffer.

6.2 SYNCHRONOUS MODE

This mode of operation is used for synchronous output buffer processing. In this mode

the client makes a blocking call to the NVIDIA Video Encoder Interface to retrieve the

output bitstream data from the encoder. The client sets the flag

NV_ENC_INITIALIZE_PARAMS::enableEncodeAsync to 0 for operation in synchronous

mode. The client then must call NvEncEncodePicture without setting a completion

event handle. The client must call NvEncLockBitstream with flag

NV_ENC_LOCK_BITSTREAM::doNotWait set to 0, so that the lock call blocks until the

hardware encoder finishes writing the output bitstream. The client can then operate on

the generated bitstream data and call NvEncUnlockBitstream. This is the only mode

supported on Linux.

6.3 THREADING MODEL

In order to get maximum performance for encoding, the encoder client should create a

separate thread to wait on events or when making any blocking calls to the encoder

interface.

The client should avoid making any blocking calls from the main encoder processing

thread. The main encoder thread should be used only for encoder initialization and to

submit work to the HW Encoder using NvEncEncodePicture API, which is non-

blocking.

Output buffer processing, such as waiting on the completion event in asynchronous

mode or calling the blocking API’s such as

NvEncLockBitstream/NvEncUnlockBitstream in synchronous mode, should be done

in the secondary thread. This ensures that the main encoder thread is never blocked

except when the encoder client runs out of resources.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 22

It is also recommended to allocate a large number of input and output buffers in order to

avoid resource hazards and improve overall encoder throughput.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 23

Chapter 7. MOTION-ESTIMATION-ONLY
MODE

NVENC can be used as a hardware accelerator to perform motion search and generate

motion vectors and mode information. The resulting motion vectors or mode decisions

can be used, for example, in motion compensated filtering or for supporting other

codecs not fully supported by NVENC or simply as motion vector hints for a custom

encoder. The procedure to use the feature is explained below.

7.1 QUERY MOTION-ESTIMATION ONLY MODE
CAPABILITY

Before using the motion-estimation (ME) only mode, the client should explicitly query

the capability of the encoder to support ME only mode. For this, the client should do the

following:

1. Specify the capability attribute as NV_ENC_CAPS_SUPPORT_MEONLY_MODE to query

through the NV_ENC_CAPS_PARAM::capsToQuery parameter.

2. The client should call NvEncGetEncoderCaps to determine support for the required

attribute.

NV_ENC_CAPS_SUPPORT_MEONLY_MODE indicates support of ME only mode in hardware.

0: ME only mode not supported.

1: ME only mode supported.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 24

7.2 CREATE RESOURCES FOR INPUT/OUTPUT
DATA

The client should allocate at least one buffer for the input picture by calling

NvEncCreateInputBuffer API, and should also allocate one buffer for the reference

frame by using NvEncCreateInputBuffer API. The client is responsible for filling in

valid input data.

After input resources are created, client needs to allocate resources for the output data

by using NvEncCreateMVBuffer API.

7.3 POPULATE ME ONLY MODE SETTINGS

The structure NV_ENC_CODEC_CONFIG::NV_ENC_CONFIG_H264_MEONLY provides the

ability to control the partition types of motion vectors and modes returned by NVENC

hardware. Specifically, the client can disable intra mode and/or specific MV partition

sizes by setting the following flags:

NV_ENC_CONFIG_H264_MEONLY::disableIntraSearch
NV_ENC_CONFIG_H264_MEONLY::disablePartition16x16

NV_ENC_CONFIG_H264_MEONLY::disablePartition8x16

NV_ENC_CONFIG_H264_MEONLY::disablePartition16x8

NV_ENC_CONFIG_H264_MEONLY::disablePartition8x8

The ME-only mode API also exposes a parameter

NV_ENC_CONFIG::NV_ENC_MV_PRECISION to control the precision of motion vectors

returned by the hardware. For full-pel precision, client must ignore two LSBs of the

motion vector. For sub-pel precision, the two LSBs of the motion vector represent

fractional part of the motion vector. To get motion vectors for each macroblock, it is

recommended to disable intra modes by setting

NV_ENC_CONFIG_H264_MEONLY::disableIntraSearch = 1 and let NVENC decide the

optimal partition sizes for motion vectors.

7.4 RUN MOTION ESTIMATION

The Client should create an instance of NV_ENC_MEONLY_PARAMS.

The pointers of the input picture buffer and the reference frame buffer need to be fed to

NV_ENC_MEONLY_PARAMS::inputBuffer and

NV_ENC_MEONLY_PARAMS::referenceFrame respectively.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 25

The pointer returned by NvEncCreateMVBuffer API in the

NV_ENC_CREATE_MV_BUFFER::mvBuffer field needs to be fed to

NV_ENC_MEONLY_PARAMS::mvBuffer.

In order to operate in asynchronous mode, the client should create an event and pass

this event in NV_ENC_MEONLY_PARAMS::completionEvent. This event will be signaled

upon completion of motion estimation. Each output buffer should be associated with a

distinct event pointer.

Client should call NvEncRunMotionEstimationOnly to run the motion estimation on

hardware encoder.

For asynchronous mode client should wait for motion estimation completion signal

before reusing output buffer and application termination.

Client must lock NV_ENC_CREATE_MV_BUFFER::mvBuffer using NvEncLockBitstream

to get the motion vector data.

Finally, NV_ENC_LOCK_BITSTREAM::bitstreamBufferPtr which contains the output

motion vectors should be typecast to NV_ENC_H264_MV_DATA*/NV_ENC_HEVC_MV_DATA*

for H.264/HEVC respectively. Client should then unlock

NV_ENC_CREATE_MV_BUFFER::mvBuffer by calling NvEncUnlockBitstream.

7.5 ENABLING MOTION ESTIMATION FOR STEREO
USECASES

For stereo use cases where in two views need to be processed we suggest the following

approach for better performance and quality of motion vectors:

1. Client should create single encode session.

2. The client should kick-off the processing of left and right views on separate

threads.

3. The client should set NV_ENC_MEONLY_PARAMS::viewID to 0 and 1 for left and

right views.

4. The Main thread should wait for completion of the threads which have been

kicked off NVENC for left and right views.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 26

7.6 RELEASE THE CREATED RESOURCES

Once the usage of motion estimation is done, the client should call

NvEncDestroyInputBuffer to destroy the input picture buffer and the reference frame

buffer and should call NvEncDestroyMVBuffer to destroy the motion vector data buffer.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 27

Chapter 8. ADVANCED FEATURES AND
SETTINGS

8.1 LOOK-AHEAD

Look-ahead improves the video encoder’s rate control accuracy by enabling the encoder

to buffer the specified number of frames, estimate their complexity and allocate the bits

appropriately among these frames proportional to their complexity.

To use this feature, the client must follow these steps:

1. The availability of the feature in the current hardware can be queried using

NvEncGetEncodeCaps and checking for NV_ENC_CAPS_SUPPORT_LOOKAHEAD.

2. Look-ahead needs to be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig-

>rcParams.enableLookahead = 1.

3. The number of frames to be looked ahead should be set in

NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.lookaheadDepth which

can be up to 32.

4. By default, look-ahead enables adaptive insertion of intra frames and B frames. They

can however be disabled by setting

NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.disableIadapt and/or

NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.disableBadapt to 1.

5. When the feature is enabled, frames are queued up in the encoder and hence

NvEncEncodePicture will return NV_ENC_ERR_NEED_MORE_INPUT until the encoder

has sufficient number of input frames to satisfy the look-ahead requirement. Frames

should be continuously fed in until NvEncEncodePicture returns NV_ENC_SUCCESS.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 28

8.2 ADAPTIVE QUANTIZATION (AQ)

This feature improves visual quality by adjusting encoding QP (on top of QP evaluated

by the Rate Control Algorithm) based on spatial and temporal characteristics of the

sequence. The current SDK support two flavors of AQ which are explained as follows:

8.2.1 Spatial AQ

Spatial AQ mode adjusts the QP values based on spatial characteristics of the frame.

Since the low complexity flat regions are visually more perceptible to quality differences

than high complexity detailed regions, extra bits are allocated to flat regions of the frame

at the cost of the regions having high spatial detail. Although Spatial AQ improves the

perceptible visual quality of the encoded video, the required bit redistribution results in

PSNR drop in most of the cases. Therefore, during PSNR-based evaluation, this feature

should be turned off.

To use Spatial AQ, follow these steps in your application.

 Spatial AQ can be enabled during initialization by setting

NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams. enableAQ = 1.

 The intensity of QP adjustment can be controlled by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig->rcParams.aqStrength

which ranges from 1 (least aggressive) to 15 (most aggressive). If not set, strength is

auto selected by driver.

8.2.2 Temporal AQ
Temporal AQ tries to adjust encoding QP (on top of QP evaluated by the Rate Control

Algorithm) based on temporal characteristics of the sequence. Temporal AQ improves

the quality of encoded frames by adjusting QP for regions which are constant or have

low motion across frames but have high spatial detail, such that they become better

reference for future frames. Allocating extra bits to such regions in reference frames is

better than allocating them to the residuals in referred frames because it helps improve

the overall encoded video quality. If majority of the region within a frame has little or no

motion, but has high spatial details (e.g. high-detail non-moving background) enabling

temporal AQ will benefit the most.

One of the potential disadvantages of temporal AQ is that enabling temporal AQ may

result in high fluctuation of bits consumed per frame within a GOP. I/P-frames will

consume more bits than average P-frame size and B-frames will consume lesser bits.

Although target bitrate will be maintained at the GOP level, the frame size will fluctuate

from one frame to next within a GOP more than it would without temporal AQ. If a

strict CBR profile is required for every frame size within a GOP, it is not recommended

to enable temporal AQ. Additionally, since some of the complexity estimation is

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 29

performed in CUDA, there may be some performance impact when temporal AQ is

enabled.

To use temporal AQ, follow these steps in your application.

 Query the availability of temporal AQ for the current hardware by calling the

API NvEncGetEncodeCaps and checking for

NV_ENC_CAPS_SUPPORT_TEMPORAL_AQ.

 If supported, temporal AQ can be enabled during initialization by setting
NV_ENC_INITIALIZE_PARAMS::encodeconfig-

>rcParams.enableTemporalAQ = 1.

8.3 HIGH BIT DEPTH ENCODING

All NVIDIA GPUs support 8-bit encoding (RGB/YUV input with 8-bit precision). Some

of the NVIDIA GPUs support high-bit-depth HEVC encoding (HEVC main-10 profile

with 10-bit input precision). To encode 10-bit content the following steps are to be

followed.

1. The availability of the feature can be queried using NvEncGetEncodeCaps and

checking for NV_ENC_CAPS_SUPPORT_10BIT_ENCODE.

2. Create the encoder session with NV_ENC_HEVC_PROFILE_MAIN10_GUID.

3. During encoder initialization, set

encodeConfig->encodeCodecConfig.hevcConfig.pixelBitDepthMinus8 = 2

4. The input surface format needs be set to
NV_ENC_BUFFER_FORMAT_YUV420_10BIT OR NV_ENC_BUFFER_FORMAT_ABGR

10 or NV_ENC_BUFFER_FORMAT_ARGB10 or

NV_ENC_BUFFER_FORMAT_YUV444_10BIT, depending upon nature of input.

5. Other encoding parameters such as preset, rate control mode etc. can be set as

desired.

8.4 ENCODER FEATURES USING CUDA

Although the core video encoder hardware on GPU is completely independent of CUDA

cores or graphics engine on the GPU, following encoder features internally use CUDA

for hardware acceleration. Note that the impact of enabling these features on overall

CUDA or graphics performance is minimal and this list is provided purely for

information purposes.

 Two-pass rate control modes for high quality presets.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 30

 Look-ahead

 All adaptive quantization modes.

 Encoding with inputs in RGB formats.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 31

Chapter 9. RECOMMENDED NVENC
SETTINGS

NVIDIA hardware video encoder is used for several purposes in various applications.

Some of the common applications include: Video-recording (archiving), game-casting

(broadcasting/multicasting video gameplay online), transcoding (live and video-on-

demand) and streaming (games or live content). Each of these use-cases has its unique

requirements for quality, bitrate, latency tolerance, performance constraints etc.

Although NVIDIA Encoder Interface provides flexibility to control the settings with a

large number of API’s, below table can be used as a general guideline for recommended

settings for some of the popular use-cases to deliver the best encoded bit stream quality.

These recommendations are particularly applicable to GPUs based on second generation

Maxwell architecture beyond. For earlier GPUs (Kepler and first generation Maxwell), it

is recommended that clients use the Table 1 as a starting point and adjust the settings to

achieve appropriate performance-quality tradeoff.

NVIDIA Video Encoder (NVENC) Interface NVENC_VideoEncoder_API_PG-06155-001_v07 | 32

Table 1. Recommended NVENC settings for various use-cases

Use-case Recommended settings for optimal quality and performance

Recording/Archiving
 High Quality preset

 Rate control mode = VBR

 Very large VBV buffer size (4 seconds)

 B Frames1

 Finite GOP length (2 seconds)

 Adaptive quantization2 (AQ) enabled

Game-casting &

cloud transcoding

 High Quality preset

 Rate control mode = Two-pass CBR

 Look-ahead (with dynamically inserted I and B frames)

 Medium VBV buffer size (1 second)

 B Frames1

 Finite GOP length (2 seconds)

 Adaptive quantization2 (AQ) enabled

Low-latency use cases

like game-streaming,

video conferencing etc.

 Low-Latency High Quality preset

 Rate control mode = Two-pass CBR

 Very low VBV buffer size (Single frame)

 No B Frames

 Infinite GOP length

 Adaptive quantization2 (AQ) enabled

1 Recommended for low motion games and natural video. It is observed that 3 B frames results in most optimal quality
2 Available only in second generation Maxwell GPUs and above. Temporal AQ in general gives better quality than Spatial

AQ but is computationally complex.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2016 NVIDIA Corporation. All rights reserved.

